Initiating Heavy-atom Based Phasing by Multi-Dimensional Molecular Replacement by Pedersen et al
نویسندگان
چکیده
To obtain an electron-density map from a macromolecular crystal the phase-problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitantly the determination of the heavy atom substructure. This is customarily done by direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available, as often the case for e.g. membrane proteins. Here we present an approach for heavy atom site identification based on a Molecular Replacement Parameter Matrix (MRPM) search. It involves an n-dimensional search to test a wide spectrum of molecular replacement parameters, such as clusters of different conformations. The result is scored by the ability to identify heavy-atom positions, from anomalous difference Fourier maps, that allow meaningful phases to be determined. The strategy was successfully applied in the determination of a membrane protein structure, the CopA Cu-ATPase, when other methods had failed to resolve the heavy atom substructure. MRPM is particularly suited for proteins undergoing large conformational changes where multiple search models should be generated, and it enables the identification of weak but correct molecular replacement solutions with maximum contrast to prime experimental phasing efforts.
منابع مشابه
Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.
To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are avai...
متن کاملRibosomal crystallography: from crystal growth to initial phasing
Preliminary phases were determined by the application of the isomorphous replacement method at low and intermediate resolution for structure factor amplitudes collected from crystals of large and small ribosomal subunits from halophilic and thermophilic bacteria. Derivatization was performed with dense heavy atom clusters, either by soaking or by specific covalent binding prior to the crystalli...
متن کاملLab Source Anomalous Scattering Using Cr Kα Radiation
High-throughput crystallography requires a method by which the structures of proteins can be determined quickly and easily. Experimental phasing is an essential technique in determining the three-dimensional protein structures using single-crystal X-ray diffraction. In macromolecular crystallography, the phases are derived either by Molecular Replacement (MR) method using the atomic coordinates...
متن کاملWith phases: how two wrongs can sometimes make a right
In isolation, both weak isomorphous/anomalous difference signals from heavy-atom derivatization and phases from partial molecular-replacement solutions for a subset of the asymmetric unit often fall short of producing interpretable electron-density maps. Phases generated from very partial molecular-replacement models (if generated carefully) can be used to reliably locate heavy-atom sites, even...
متن کاملApplication of the complex multivariate normal distribution to crystallographic methods with insights into multiple isomorphous replacement phasing.
Probabilistic methods involving maximum-likelihood parameter estimation have become a powerful tool in computational crystallography. At the centre of these methods are the relevant probability distributions. Here, equations are developed based on the complex multivariate normal distribution that generalize the distributions currently used in maximum-likelihood model and heavy-atom refinement. ...
متن کامل